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1. Introduction 
Conventional homodyne detection employs a continuous-wave (CW) local laser oscillator (LO) to achieve down-
conversion of the optical signal to the base-band and amplification simultaneously. Recent experiment on homodyne 
detection of 12.5 Gb/s binary phase-shift-keyed (BPSK) signals using pulsed LO showed that the receiver sensitivity 
is at least 2 dB better than that for CW LO [1]. Pulsed LO also offers pulse shaping capabilities [1] and the potential 
of optical demultiplexing of OTDM signal not shared by CW LO. The performance of optical phase-locked loop 
(OPLL) using pulsed LO, however, has not been reported to the best knowledge of the author. In this paper, 
theoretical comparison of the performance of balanced and Costas OPLLs using pulsed and CW LO is described. 
Analytical expressions of the total phase error variances for the two types of OPLLs as a result of laser phase noise, 
data noise, and shot noise for pulsed LO in terms of those for the CW LO are presented.  

In this analysis, the pulsed LO is produced by a push-pull type Mach-Zehnder modulator (MZM) with an output 
optical field at a carrier frequency fc: ( ) ( ) ( ) 2sin 2 cj f tP

LO iE t E V t V e π
ππ =   , where Vπ is the MZM’s half-wave voltage 

and the driving voltage of the MZM is ( ) ( )sin 2b s d mV t V k k k tπ ω = −  . The RF modulation frequency, ωm/(2π), 

equals to the symbol rate (1/Ts) of the optical signal to be mixed with the LO. Fig. 1a shows values of kb, ks, and kd 
that produce pulses with duty cycles of 50, 35, and 65%. The 65% duty cycle case is not considered here since it is 
not suitable for the OPLL due to carrier-suppressed pulses. The duty cycle is defined here as the ratio of the average 
power to the peak power of the pulse. For fair comparison, the average power of the pulsed LO is assumed to be the 
same as the CW LO ( CW

LOP ). Therefore, the pulsed LO power, proportional to ( )
2P

LOE t , can be expanded as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1cos 2 2 cos sin 2 2 sinP CW
n nLO LO b n s d m b n s d m
even odd

P t P D D k J k nk t k J k nk tπ π ω π π ω
∞ ∞

= =
     = − −      

∑ ∑ ,      (1) 

and ( ) ( ) ( ) ( ) ( ) ( ){ }0sin 4 4 summation of terms of sin and cosP CW
LO LO b s d m d mP t P D k J k nk t nk tπ π ω ω= + ,           (2) 

where ( ) ( )01 cos 2 2 2b sD k J kπ π= −    is the duty cycle and ( )nJ i  is the nth order Bessel function of the first kind. 
Balanced and Costas loops are two well-known OPLLs. Many theoretical analyses on their performances with 

CW LO have been reported previously [2,3]. Similar analysis can be applied for pulsed LO taking into account of its 
time-varying response. Figs. 1b and 1c show schematics of the two OPLLs. The performance of an OPLL can be 
quantified by the phase error φe and its variance 2

eφσ  with ( ) ( ) ( ) ( )e Tx LO ct t t tφ φ φ φ= − − , where φTx and φLO are the 

transmitter and local laser phase noise, and φc is the controlled phase to the LO. For balanced OPLL, the total phase 
error variance is 2 2 2 2

e l s dφσ σ σ σ= + +  where the terms on the right side represents independent noise processes: signal 

and LO laser phase noise ( 2
lσ ), shot noise ( 2

sσ ), and data-induced noise ( 2
dσ ) [2].  For Costas OPLL, the total phase 

error variance is 2 2 2
e l sφσ σ σ= +  with no contribution from data noise [3]. Detail derivation of 2

eφσ  for the two OPLLs 
with pulsed LO is quite lengthy therefore only results are presented here. The analysis assumed that the phase error 
is small so that the OPLL is tracking the phase which means sin[φe(t)] ≈ φe(t) and cos[φe(t)] ≈ 1.  Also, the OPLL has 
a first-order low-pass loop filter (Figs. 1b and 1c) with a bandwidth much smaller than the symbol rate of the signal 
which is typically the case [2]. The data signal is assumed to be non-return-to-zero (NRZ) format. For fair 
comparison, parameters such as the loop filter time constants (τ1 and τ2) and the loop gain (GL) are assumed to be 
the same for both CW and pulsed LO [2]. Equations (1) and (2) were used to derive the noise power spectral 
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densities for the phase error variances for pulsed LO in terms of those for CW LO. Except for the laser phase noise 

induced phase error, the phase error variance can be evaluated via the integral: ( ) 2
i PLLi G H dI ω ω

∞

−∞
= ∫ , where 

HPLL(ω) depends on the transfer function of the loop filter, HLF(ω), and Gi is the power spectral density of the 

various noise processes [2].  For balanced OPLL, Gi is proportional to ( ) ( ){ } 2P
LOF P t d t  and ( ){ } 2

sF n t  for data 

and shot noise induced phase error, where { }F i  denotes Fourier transform, d(t) varies between ±1 represents the 

binary NRZ data, and ns(t) is the shot noise. For Costas OPLL, Gi is proportional to ( ) ( ) ( ){ } 2
P

LO sF P t d t n t  for shot 

noise induced phase error. Using Fourier transform properties and the limited bandwidth of the loop filter, it can be 
shown that all the sin(nkdωmt) and cos(nkdωmt) terms in Eq. (1) and Eq. (2) do not contribute to the integral Ii and can 
be dropped.  As a result, the phase error analysis can be significantly simplified resulting into analytical expressions 
of the phase error variances for pulsed LO for balanced and Costas OPLLs. These results are presented next.  

Duty Cycle    kb    ks    kd
      50%       1     1     1
      35%          2     2    1/2
      65%          0     2    1/2
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Fig.  1. (a) Parameters of pulsed LO. (b) Balanced and (c) Costas OPLLs. LO: CW or pulsed. BP: balanced photoreceiver. 
 
2. Balanced OPLL 
The phase error variance due to laser phase noise for a beat linewidth of ∆ν using CW LO is given by [2]: 

( )2 2 CW CW
l CW nσ π ν ξ ω− = ∆ , where 1

CW CW
n L LA Gω τ= , 2

CW CW
nξ ω τ= , ( )2 cosCW CW

L g s LOA C P P θ= , Cg is the product 

of the transimpedance gain (GT) and the photodetector responsivity (R), Ps and CW
LOP  are the average optical powers 

of the signal and the CW LO, θ < π/2 is the phase angle of the incomplete modulation to produce the required 
residual pilot carrier (full modulation: θ =π/2) [2]. The natural frequency and damping coefficient of the loop are 

( )2CW
nω π  and 2CWξ , respectively. For pulsed LO, the laser phase noise induced phase error variance is 

( )2 2 P P
l P nσ π ν ξ ω− = ∆  with 1

P CW CW
n L L l n lA G B Bω τ ω= =  and 2 2

P P CW CW
n n l lB Bξ ω τ ω τ ξ= = =  where 

( ) ( )0sin 4 4l b sB D k J kπ π=    .  Therefore, we obtain ( ) ( )2 22 2P P CW CW
l P n l n l l CWB Bσ π ν ξ ω π ν ξ ω σ− −= ∆ = ∆ = . 

The phase error variance due to data noise for CW LO is given by [2]: ( )2 22 tan CW
d CW s PLLT Bσ θ− = , where 

( ) ( )2
4 1CW CW CW CW

PLL nB ω ξ ξ= +      
. For pulsed LO, ( ) ( )2 2 2 2 22 tan 2 tanP P

d P s l PLL l s PLLT B B B T Bσ θ θ− = =  is the data noise 

induced phase error variance where ( ) ( ) ( ) ( )2 2 2
4 1 1 1P P P P CW CW CW

PLL n PLL lB B Bω ξ ξ ξ ξ= + = + +                  
. Therefore, one 

obtain for the phase error variance due to data noise for pulsed LO: 

( ) ( ) ( )2 22 2 22 tan 1 1CW CW CW
d P s PLL l d d CWT B B Bσ θ ξ ξ σ− −= + + =   

      
, where ( ) ( )2 2

1 1CW CW
d lB Bξ ξ= + +   

      
. 

The phase error variance due to shot noise for CW LO is given by [2]: ( ) ( )22 22 CW CW CW
s CW LO T PLL LqRP G B Aσ − = . For 

pulsed LO, the phase error variance due to shot noise is ( ) ( )22 2 2 2 22 CW CW CW
s P l d LO T PLL L l d s CWB B qRP G B A B Bσ σ− −= = . 

Therefore, the total phase error variance of balanced OPLL for pulsed LO in terms of that for CW LO is 
2 2 2 2 2

e P l l CW d d CW l d s CWB B B Bφσ σ σ σ− − − −= + + . Using pulsed LO parameters shown in Fig. 1a and assuming 2 1 2CWξ =  
for typical damping coefficient, the total phase error variance of balanced OPLL for pulsed LO in terms of phase 
error variances for CW LO for 50 and 35% duty cycle of the LO pulse is 
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2 2 2
2

2 2 2

1.1742 0.9011 1.2424 , for 50% duty cycle,

1.2496 0.8668 1.3536 , for 35% duty cycle.e

l CW d CW s CW
P

l CW d CW s CW
φ

σ σ σ
σ

σ σ σ
− − −

−
− − −

+ +

+ +

= 


 

The increase of the laser phase noise and shot noise induced phase error variances for pulsed LO is due to the 
reduced field amplitude of the optical carrier of the pulsed LO since its average power is the same as the CW LO.  
The data noise induced phase error is lower for pulsed LO due to reduction of the effective bandwidth of the OPLL 
caused by the reduced carrier field amplitude of the pulsed LO. Intuitively, the data noise effect should decrease 
since the un-intentional tracking of the low-frequency data-noise by the loop is less effective with a reduced optical 
carrier amplitude of the pulsed LO. To estimate the receiver sensitivity penalty due to the phase error for pulsed LO 
relative to CW LO, Gaussian distribution was used to approximate the phase error statistics in order to simplify the 
error probability calculation.  The error probability is therefore given by [2] 

( ) ( ) ( )2 22erfc exp 21 2 2 2 sin
ee e e eR eP dN φφ φ σ φπσ θ φ

∞

−∞
= −    +      ∫ , 

where NR is the received number of photons per bit.  Assuming that the shot noise induced phase error dominates all 
other noise process so that 2 2 2 2 2 22 2

e e e eCW s CW P s CW P CWl d l dB B B Bφ φ φ φσ σ σ σ σ σ− − − − − −≈ ⇒ ≈ ⇒ ≈ . Therefore, for 
o o5 (10 )

e CWφσ − =  the standard deviation of the phase error for pulsed LO is 5.5732o (11.1463o) and 5.8171o 
(11.6343o) for 50 and 35% duty cycle, respectively. This gives a receiver sensitivity penalty for pulsed LO relative 
to CW LO at 10-9 bit-error-rate of about 0.03 (1.26) and 0.044 (2.15) dB for 50 and 35% duty cycle with θ = 80o. 
 
3. Costas OPLL 
Due to the multiplication process in the RF mixer (Fig. 1c), second order noise terms are generated but these terms 
are negligible and were not included in the analysis. The phase error variance due to laser phase noise is [3]: 

( )2 2 CW CW
l CW nσ π ν ξ ω− = ∆  for CW LO. For pulsed LO, it can be shown that the phase error variance is 

( ) ( )2 22 2P P CW CW
l P n n l CWσ π ν ξ ω π ν ξ ω σ− −= ∆ = ∆ = . 

The phase error variance due to shot noise for CW LO is ( )( )2 2 CW
s CW s PLLq RP Bσ − =  [3]. For pulsed LO, one can 

show that ( )( )( ) ( )2 2 2 21 2 1CW
s P l s PLL l s CWB q RP B Bσ σ− −= = , where q is the electronic charge and Bl is defined in the 

previous section. Therefore, the total phase error variance for pulsed LO in terms of those for CW LO is 

( )2 2 2 21
e P l CW l s CWBφσ σ σ− − −= + . Note that the multiplication process produces cross terms that are not present in the 

balanced loop analysis. The laser phase noise induced phase error variance remains the same as that for CW LO due 
to the term ( ) ( ){ } ( )P

LO e LFF P t t Hφ ω  that can be approximated by ( ){ } ( )CW
LO e LFP F t Hφ ω  using Eq. (1). For the shot 

noise induced phase error, evaluation of the term ( ) ( ) ( ){ } 2
P

LO sF P t d t n t  leads to the coefficient 21 lB . Therefore, 

the total phase error variance for pulsed LO in terms of phase error variances of CW LO for 50 and 35% duty cycle 
of the LO pulse is 

2 2
2

2 2

0.7253 , for 50% duty cycle,

0.6404 , for 35% duty cycle.e

l CW s CW
P

l CW s CW
φ

σ σ
σ

σ σ
− −

−
− −

+
=

+





 

In summary, theoretical comparison of phase noise performance of balanced and Costas OPLLs using CW and 
pulsed LO was conducted. Analytical expressions of phase error variances for pulsed LO in terms of CW LO are 
presented. For balanced OPLL, the laser phase and shot noise induced phase errors are higher for pulsed LO while 
the data-induced phase error is lower for pulsed LO. For Costas OPLL, CW and pulsed LO have the same 
performance except for shot noise induced phase error which is lower for pulsed LO. Phase error variances due to 
ASE noise for the two OPLLs with pulsed LO have also been derived. Details of the results will be presented. 
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